Scintillation index of modified Bessel-Gaussian beams propagating in turbulent media.
نویسندگان
چکیده
The scintillation index is formulated for modified Bessel-Gaussian beams propagating in weakly turbulent media. Numerical calculations applied directly to the derived triple integral show that, for off-axis positions, the modified Bessel-Gaussian beams of higher than zero order scintillate less than Gaussian beams at large input beam sizes and low beam orders with the increasing width parameter initially contributing positively to this phenomenon of less scintillation. As the beam order exceeds two, this advantage is diminished. The modified Bessel-Gaussian beam of order zero is a special case, however, exhibiting lowest scintillation at small input beam sizes. When considered against the propagation length, higher-order modified Bessel-Gaussian beams continue to offer less scintillation than those of order zero. At various radial positions, the scintillation index of modified Bessel-Gaussian beams with orders higher than zero attains small values toward the beam edges but rises sharply when approaching the beam axis. The effect of inner and outer scales of turbulence is also studied, and it is found that while increasing the inner scale of turbulence seems to cause increases in scintillation, the influence of the outer scale is hardly noticeable.
منابع مشابه
Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence.
The concept of pseudo-Bessel correlated beams is introduced, and their scintillation properties on propagation through turbulence are investigated. By using the Rytov approximation, the scintillation index of pseudo-Bessel correlated beams is formulated in weak turbulence. The study of scintillation is extended into strong turbulence by numeric simulations. It is shown that by choosing an appro...
متن کاملScintillation characteristics of cosh-Gaussian beams.
By using the generalized beam formulation, the scintillation index is derived and evaluated for cosh-Gaussian beams in a turbulent atmosphere. Comparisons are made to cos-Gaussian and Gaussian beam scintillations. The variations of scintillations against propagation length at different values of displacement and focusing parameters are examined. The dependence of scintillations on source size a...
متن کاملA tale of two beams: an elementary overview of Gaussian beams and Bessel beams
An overview of two types of beam solutions is presented, Gaussian beams and Bessel beams. Gaussian beams are examples of non-localized or diffracting beam solutions, and Bessel beams are example of localized, non-diffracting beam solutions. Gaussian beams stay bounded over a certain propagation range after which they diverge. Bessel beams are among a class of solutions to the wave equation that...
متن کاملBeam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams
Optical beam wander is one of the most important issues for free-space optical (FSO) communication. We theoretically derive a beam wander model for Bessel beams propagating in turbulent atmosphere. The calculated beam wander of high order Bessel beams with different turbulence strengths are consistent with experimental measurements. Both theoretical and experimental results reveal that high ord...
متن کاملOptimal beam forming for laser beam propagation through random media
Focusing optical beams on a target through random propagation media is very important in many applications such as free space optical communications and laser weapons. Random media effects such as beam spread and scintillation can degrade the optical system’s performance severely. Compensation schemes are needed in these applications to overcome these random media effects. In this research, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 26 2 شماره
صفحات -
تاریخ انتشار 2009